
Presentation structure


cover title-Topics: goals for Analyze VAE, Meeting W/ Rich.,
Week Pind other methods Show grogress. Show Results.

What's next - Continue lessons w Richard, Create found methods

Veb structure sidebar

Analyzing PTKFO_VAE.ipynb

256

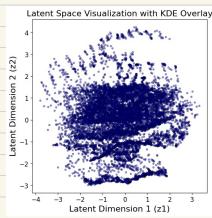
- image loaded using DM3Reader (data)

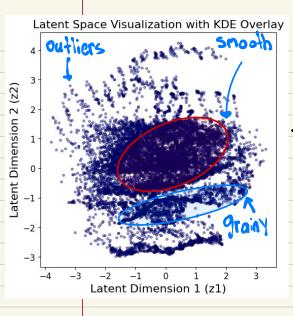
- Analyze : understand note book Research techniques used for images find or build on top of those techniques

```
def get_image_stacks(path, channel):
                    file_list = sorted(os.listdir(path))
                   # Initialize lists to hold images of each type and size
                   StackFolder_ibw_256 = []
                   # Loop through each file in the directory
                   for file_name in file_list:
                       file_path = os.path.join(path, file_name)
                       if file_name.endswith('.ibw'):
                              image_data = IgorIBWReader(file_path).read()
                              image = np.array(image_data[channel])
                              image_shape = image.shape
                              # Add the image to the corresponding stack based on its dimensions
                              if image_shape == (256, 256):
                                  StackFolder_ibw_256.append(image)
                                  print(f"Image '{file_name}' skipped due to unexpected size {image_shape}")
                           except Exception as e:
                              print(f"Error reading .dm3 file '{file_name}': {str(e)}")
                   StackFolder_ibw_256 = np.array(StackFolder_ibw_256)
                    return StackFolder_ibw_256
            def extract_subimages(image, step_size, window_size):
                   subimages_target = []
                   coms_target = []
                   img_height, img_width = image.shape
                   window_height, window_width = window_size
                    for y in range(0, img_height - window_height + 1, step_size):
                       for x in range(0, img_width - window_width + 1, step_size):
                          subimage = image[y:y + window_height, x:x + window_width]
                          subimages_target.append(subimage)
                          center_y = y + window_height // 2
                          center_x = x + window_width // 2
    _image_stacks(zath, channel)
                the files in path for each file ending
                                11th Igor"IBW Reader
from (image-data Lchannel 1
                       Numpy array with shape (N, 256, 256
```

Notes: .ibu is 160R Pro's "binary wave" format.

Analyzing PTKFO_VAE.ipynb

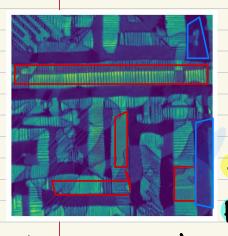

techniques used


- VAE = Variational Autoencoder
- latent space with KDE

latent space with KDE

latent space visualization with KDE overlay is a technique used in ML to understand: interpret the structure of Jaha processed by a neural network

- it combines a reduced-dem plot of the data's latent, space with a KDE to highlight areas of higher data conc.
- 1 dot = One image patch (a small cut of the image)
- are close tagether patches that look different are for apart



Why do dots cluster together? -Some dots show smooth flat -some show grains textures -some show lines or cracks

· All the "smooth" patches end up with similar 21,72 values + form a cluster

• All the "grain," patches and up in another region + another clust

How to interpret this?

looking at the plot:

Big dense, blob in middle: the

"typical" structure in data set / nost

common mineral/phase in background

Scattered dots at edges: rare patches might correspond to unusual material features, impurities, or even noise

Why is this important?

- you can project those classes back onto the original image:

See where the, occur spatially

how can we build on top of this?

- Clustering (e.g. K-means)

• Why? scatterplot is visually messy. Clustering algorithms can outomatically groups into "texture classes"

• You. Might discover groups that carresponds to a distinct texture tree

Condo librarico ll Combiterial